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Abstract. On the basis of a classical model of spins, we discuss the temperature dependence 
of both the width and the resonance frequency of the EPR lines in a one-dimensional 
Heisenberg antiferromagnet with a Dzyaloshinsky-Moriya antisymmetric exchange inter- 
action as a main perturbation term. We find that the width does not grow with decreasing 
temperature toward TN, while the resonance frequency is independent of temperature. 
These results are completely different from those for a system with symmetric perturbation 
terms, such as the dipolar, anisotropic exchange and single-ion anisotropy terms; in such 
systems, with decreasing temperature toward TN the linewidth broadens and diverges, while 
the resonance frequency goes up or down according to the direction of an external field with 
respect to the chain axis. 

1. Introduction 

Electron paramagnetic resonance (EPR) is a useful method for the investigation of spin 
dynamics, especially for low-dimensional Heisenberg magnets. As is well known, the 
width and resonance frequency of the EPR lines in most one-dimensional Heisenberg 
antiferromagnets (IDHAFS) show remarkable changes with the development of short- 
range order over a wide range of temperature T above TN. That is, the linewidth Aw 
increases over the short-range-order region and diverges when T approaches TN, which 
has been found in many lDHAFs as reviewed by Drumheller [l], while the resonance 
frequency w goes up or down according to the direction of the external field H with 
respect to the chain axis. That is, w forH parallel to the chain axis (denoted wli) increases 
with decreasing T toward TN, while w for H perpendicular to the chain axis (denoted 
w L )  decreases; these two frequencies have a relation (0.11 w:)1/3 = constant. Such a 
dependence of w on Twas pointed out theoretically [2,3] and was confirmed in several 
iDHAFs such as TMMC and CsMnC13.2H20 [2,4]. This behaviour of Au( T) and w( T) is 
common in systems with symmetric perturbation terms, such as the dipolar, anisotropic 
exchange interaction terms, and has been established both theoretically and experi- 
mentally. 
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When an antisymmetric perturbation term such as a Dzyaloshinsky-Moriya (DM) 
interaction overwhelms the symmetric terms mentioned above, how will A o  and o 
behave with the change of T toward TN? The purpose of the present study is to clarify 
this issue for a 1DHAF. The DM perturbation has been shown to play a unique role in 
both static and dynamic magnetic properties [5-71. Its role in EPR lines has also been 
investigated intensively [8-111. The results which will be developed in the successive 
sections will reveal a new aspect of the role of the DM perturbation in EPR lines of iDHAFs. 
We have treated the classical Heisenberg model and have clarified that the dependence 
of both Ao and o on T over the short-range-order region is completely different from 
that in a system with the symmetric perturbation term mentioned above. 

2. The EPR linewidth 

We take the Hamiltonian 

x =  xex + Xz + X r  (1) 

which consists of the exchange between the nearest-neighbour spins, the Zeeman and 
the perturbation terms, respectively. For a lDHAF with the DM interaction, we have 

and for X r  we take 

or 

The expression (4a) for X' indicates that all the DM vectors dn,,+l are in the same 
direction, i.e. d f l - l , f l  = d,,,+l, while that of (4b) indicates that the DM vectors change 
their direction alternately, i.e. = -dn,n+l .  Let us take the coordinates [x, y ,  z] as 
zllchain axis and we treat both d,,,+lllz and d,.n+l I z .  

When the decay of the spin correlation is rapid such as for the Gaussian process, we 
can treat the linewidth A o  following Van Vleck's theory [12] as 

Ao = v%v/(M2)3/M, ( 5 )  
in which M ,  and M ,  are the second and the fourth moments, respectively. They are 
expressed as 

M2 = ( [ X ' ,  S+][S-, X r ] > / 7 5 2 ( S + S - )  

M4 = ([Xex, [ X ' ,  S+ll[[S-, %' I ,  ~,xl>/fi4(s+s-) 

(6) 

(7) 

and 

where S' are the transverse components of the total spin S = C, S,. To calculate these 
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two moments, we assume the classical model of spins, i.e. we replace a spin S by a 
classical vector s = S / d S ( S  + 1). In the calculation of the thermal average ( .  . .) we 
used an approximation Tr(exp( - X / k B  T ) ( .  . . )) = Tr(exp( - X e x / k B T ) ( .  . . )). Fol- 
lowing Fisher's classical spin model [13] which was used for the case of symmetric 
perturbation [2,3, 141, we obtain 

- 

M 2  = (1/3h2)d2S(S + 1)A(8)fDM(K) (8) 

M4 = (16/9h4)d2J2[S(S + l)l2A(8)gflM(K) for equation (4a) (9a) 

M4 = (64/9h4)d2J2[S(S + 1)I2A(8)gtM(K) for equation (4b) (9b) 

for both (4a) and (4b), while 

and 

whereA(8) is the angular contribution arising from the angle 8 betweenH and the chain 
axis and is expressed as 

The functionsfDM(K), g:M ( K )  and ggM ( K )  represent the temperature-dependent parts 
normalised at T+ m; Fisher's classical spin model [13] leads to the following expression 
for fDM( K )  : 

fDMW = (3u(K)/K)(1 - u(K))/(1 + u ( K ) )  (11) 

in which 

K = 2JS(S + l)/kB T u (K)  = coth K - l /K u(K)  = 1 - 3u(K)/K. 

We show in figure 1 the normalised linewidth AmDM( T)/AuDM( T+ a). To compare the 
present results with that of the dipolar perturbation, we have also calculated Awdd( T ) /  
Aodd(T-+ m) using the formula given in [14]. We find that AwDM(T) does not increase 
with decreasing T toward TN.  

3. The resonance frequency 

When the Zeeman energy is much larger than that of the perturbation term, the res- 
onance frequency cc) is given [ 11 as 

fio = ( [ S -  ' [ S +  , XeIl)/2(SZ) (13) 
where S' and S' are the transverse and z components of the total spin S = 2, S, 



7342 T Ishii and I Yamada 

200 I , , ,  

I 

8 

6 -  3 -  - Figure 1. The EPR linewidth normalised at 

2 100 - high temperatures is shown as a function of the a 

- normalised temperature -k,T/J ( J  < 0) for 
3 -  a S = 8.  Curves A and B are ford,- I , n  = dn,n t ,  and 

d,-,,, = -d,,,,,,, respectively. To  make a com- 
parison with a symmetric perturbation case, the 
linewidth in a one-dimensional Heisenberg anti- 
ferromagnet in which the dipolar interaction plays 
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a role in the main perturbation term is shown as 

perature T, is tentatively taken as 0 K.  

and ( .  . .) indicates the statistical average. When dn,n+l I/ z ,  we obtain the resonance 
frequencies for both H 1 1  z and H 1 1  x as 

1 
n w l l  = gllpBH - (S.i? di,n+l(S",;+I - S;SG+l) (14a) 

and 

+ i(S;S",,, - S",; , , ) ) .  (14b) 
The T-dependence of both 011 and wl, if it exists, should arise from the correlation 
function(. . .). Similar expressionsinvolving ( S , " S { + ,  - SfSf+l )  with a # /3 (a, p = x, 
y ,  z) are obtained for dn,,+, i z .  When a perturbation term consists of the dipolar 
interaction, the correlation function which appears in the expression for the resonance 
frequency is ( S , " S ; + ,  - Sf SE,, )  [2] and henceit produces a T-dependent part when the 
Zeeman interaction is taken into account besides the exchange interaction for the 
calculation of the average ( . . . ). The present antisymmetric correlation functions 
(Sf SE+, - SE Sf+ 1 )  with a # /3 vanish even when the Zeeman term is taken into account 
for the calculation of the average ( . . . ). As a result, we conclude that the DM perturbation 
brings about no change of resonance frequency with T .  

4. Discussion 

As shown above, the antisymmetric perturbation 

n 

brings about characteristic temperature behaviours in both the linewidth and the 
resonance frequency-behaviours that are completely different from those in the sym- 
metric perturbation systems. They solely orginate in the antisymmetric nature of the 
correlation functions such as (S,"Sf+, - StS,",,) for the resonance frequency and 
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((S;Sg+l - SflS;,,)*) for the linewidth with a # /3. In contrast, the correlation func- 
tionsappearas(S,"S,"+, - SfSg+l)and(S;St+l  + StS;+l)2)ina1DHAFWithsymmetric 
perturbation terms. 

As far as we know, there has been no report on lDHAFS in which the DM interaction 
is much larger than the symmetric terms. There is an exceptional example reported to 
date, i.e. KCuF, [15]; it has an extraordinarily strong DM interaction compared with the 
dipolar interaction, and hence its EPR linewidth and resonance frequency have been 
found to be governed by the DM perturbation. That is, the linewidth does not show an 
increase over the short-range-order region [ 151, while its resonance field measured at a 
fixed frequency is almost independent of T [16]. The linewidth of this compound has 
been interpreted following the theory for S = 4 given by Soos et a1 [ll]. Since the spin of 
KCuF, is 4, our present results on the classical model of spins cannot be applicable. We 
think, however, that the essential temperature behaviour of the EPR lines observed in 
KCuF3 supports the present results. 
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